Notation List

For Cambridge International Mathematics Qualifications

For use from 2020

Mathematical notation

Examinations for CIE syllabuses may use relevant notation from the following list.

1 Set notation

```
\epsilon
is an element of
\(\notin \quad\) is not an element of
\(\left\{x_{1}, x_{2}, \ldots\right\} \quad\) the set with elements \(x_{1}, x_{2}, \ldots\)
\(\{x: \ldots\} \quad\) the set of all \(x\) such that \(\ldots\)
\(\mathrm{n}(A)\)
\(\varnothing\)
\(\mathscr{E}\)
U
\(A^{\prime}\)
\(\mathbb{N}\)
\(\mathbb{Z}\)
Q
R
\(\mathbb{C}\)
\((x, y)\)
\(\subseteq\)
c
U
ก
\([a, b] \quad\) the closed interval \(\{x \in \mathbb{R}: a \leqslant x \leqslant b\}\)
\([a, b) \quad\) the interval \(\{x \in \mathbb{R}: a \leqslant x<b\}\)
\((a, b] \quad\) the interval \(\{x \in \mathbb{R}: a<x \leqslant b\}\)
\((a, b) \quad\) the open interval \(\{x \in \mathbb{R}: a<x<b\}\)
\((S, \circ \quad \quad\) or group consisting of the set \(S\) with binary operation 。
```


2 Miscellaneous symbols

```
= is equal to
# is not equal to
\equiv is identical to or is congruent to
\approx is approximately equal to
~ is distributed as
\cong is isomorphic to
\propto is proportional to
< is less than
\leqslant}\quad\mathrm{ is less than or equal to
> is greater than
\geqslant is greater than or equal to
\infty}\quad\mathrm{ infinity
m implies
\Leftarrow\quad is implied by
\Leftrightarrow implies and is implied by (is equivalent to)
```


3 Operations

$a+b$
$a-b$
$a \times b, a b$
$a \div b, \frac{a}{b}$
$\sum_{i=1}^{n} a_{i}$
$\sqrt{a} \quad$ the non-negative square root of a, for $a \in \mathbb{R}, a \geqslant 0$
$\sqrt[n]{a} \quad$ the (real) nth root of a, for $a \in \mathbb{R}$, where $\sqrt[n]{a} \geqslant 0$ for $a \geqslant 0$
$|a| \quad$ the modulus of a
$n!\quad n$ factorial
$\binom{n}{r}$
a plus b
a minus b
a multiplied by b
a divided by b
$a_{1}+a_{2}+\ldots+a_{n}$
the binomial coefficient $\frac{n!}{r!(n-r)!}$ for $n, r \in \mathbb{Z}$ and $0 \leqslant r \leqslant n$

4 Functions

$\mathrm{f}(x)$
$\mathrm{f}: A \rightarrow B$
$\mathrm{f}: x \mapsto y$
f^{-1}
gf
$\lim _{x \rightarrow a} \mathrm{f}(x)$
$\Delta x, \delta x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}$
$\mathrm{f}^{\prime}(x), \mathrm{f}^{\prime \prime}(x), \ldots, \mathrm{f}^{(n)}(x)$
$\int y \mathrm{~d} x \quad$ the indefinite integral of y with respect to x
$\int_{a}^{b} y \mathrm{~d} x$
$\dot{x}, \ddot{x}, \ldots$
the value of the function f at x
the function f maps the element x to the element y
the inverse function of the one-one function f
the composite function of f and g which is defined by $\operatorname{gf}(x)=\mathrm{g}(\mathrm{f}(x))$
the limit of $\mathrm{f}(x)$ as x tends to a
an increment of x
the derivative of y with respect to x
the nth derivative of y with respect to x
the first, second, ..., nth derivatives of $\mathrm{f}(x)$ with respect to x
the first, second, ... derivatives of x with respect to t
f is a function under which each element of set A has an image in set B
the definite integral of y with respect to x between the limits $x=a$ and $x=b$

5 Exponential and logarithmic functions

e
$\mathrm{e}^{x}, \exp (x)$
$\log _{a} x$
$\ln x$
$\lg x, \log _{10} x$
base of natural logarithms
exponential function of x
logarithm to the base a of x
natural logarithm of x
logarithm of x to base 10

6 Circular and hyperbolic functions

$\left.\begin{array}{l}\sin , \cos , \tan \\ \begin{array}{l}\operatorname{cosec}, \sec , \cot t\end{array} \\ \sin ^{-1}, \cos ^{-1}, \tan ^{-1} \\ \operatorname{cosec}^{-1}, \sec ^{-1}, \cot ^{-1}\end{array}\right\} \quad$ the circular functions
$\left.\begin{array}{l}\text { sinh, cosh, tanh } \\ \operatorname{cosech}, \operatorname{sech}, \operatorname{coth}\end{array}\right\}$
$\left.\begin{array}{l}\sinh ^{-1}, \cosh ^{-1}, \tanh ^{-1} \\ \operatorname{cosech}^{-1}, \operatorname{sech}^{-1}, \operatorname{coth}^{-1}\end{array}\right\}$ the inverse circular functions

7 Complex numbers

i
z
$\operatorname{Re} z$
$\operatorname{Im} z$
$|z|$
$\arg z$
z^{*}

8 Matrices

M

\mathbf{M}^{-1}
$\operatorname{det} \mathbf{M},|\mathbf{M}|$
I

9 Vectors

a	the vector a
$\overrightarrow{A B}$	the vector represented in magnitude and direction by the directed line segment $A B$
â	a unit vector in the direction of \mathbf{a}
$\mathbf{i}, \mathbf{j}, \mathbf{k}$	unit vectors in the directions of the Cartesian coordinate axes
$\binom{x}{y},\left(\begin{array}{l} x \\ y \\ z \end{array}\right)$	the vectors $x \mathbf{i}+y \mathbf{j}$ (in 2 dimensions) and $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ (in 3 dimensions)
$\|\mathbf{a}\|, a$	the magnitude of \mathbf{a}
$\|\overrightarrow{A B}\|, A B$	the magnitude of $\overrightarrow{A B}$
a.b	the scalar product of \mathbf{a} and \mathbf{b}
$\mathbf{a} \times \mathbf{b}$	the vector product of \mathbf{a} and \mathbf{b}

10 Probability and statistics

A, B, C, \ldots	events
$A \cup B$	union of the events A and B
$A \cap B$	intersection of the events A and B
$\mathrm{P}(A)$	probability of the event A
A^{\prime}	complement of the event A
$\mathrm{P}(A \mid B)$	probability of the event A conditional on the event B
${ }^{n} \mathrm{C}_{r}$	the number of combinations of r objects from $n,{ }^{n} \mathrm{C}_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
${ }^{n} \mathrm{P}_{r}$	the number of permutations of r objects from $n,{ }^{n} \mathrm{P}_{r}=\frac{n!}{(n-r)!}$
X, Y, R, \ldots	random variables
x, y, r, \ldots	values of the random variables X, Y, R, \ldots
x_{1}, x_{2}, \ldots	observations
f_{1}, f_{2}, \ldots	frequencies with which the observations x_{1}, x_{2}, \ldots occur
$\mathrm{p}(x)$	probability function $\mathrm{P}(X=x)$ of the discrete random variable X
p_{1}, p_{2}, \ldots	probabilities of the values x_{1}, x_{2}, \ldots of the discrete random variable X
$\mathrm{f}(x)$	value of the probability density function of a continuous random variable X
$\mathrm{F}(x)$	value of the cumulative distribution function of a continuous random variable X
$\mathrm{E}(X)$	expectation of the random variable X
$\mathrm{E}(\mathrm{g}(X))$	expectation of $\mathrm{g}(X)$
$\operatorname{Var}(X)$	variance of the random variable X
$\mathrm{G}_{X}(t)$	probability generating function for the discrete random variable X
$\mathrm{M}_{X}(t)$	moment generating function for the random variable X
$\mathrm{B}(n, p)$	binomial distribution with parameters n and p
Geo(p)	geometric distribution with parameter p
$\mathrm{Po}(\lambda)$	Poisson distribution with parameter λ
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	normal distribution with mean μ and variance σ^{2}
μ	population mean
σ^{2}	population variance
σ	population standard deviation
\bar{x}	sample mean, $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
s^{2}	unbiased estimate of population variance from a sample, $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
ρ	product moment correlation coefficient for a population
r	product moment correlation coefficient for a sample
ϕ	probability density function of the standardised normal variable $Z \sim \mathrm{~N}(0,1)$
Φ	cumulative distribution function of the standardised normal variable $Z \sim \mathrm{~N}(0,1)$
$\mathrm{H}_{0}, \mathrm{H}_{1}$	null and alternative hypotheses for a hypothesis test

